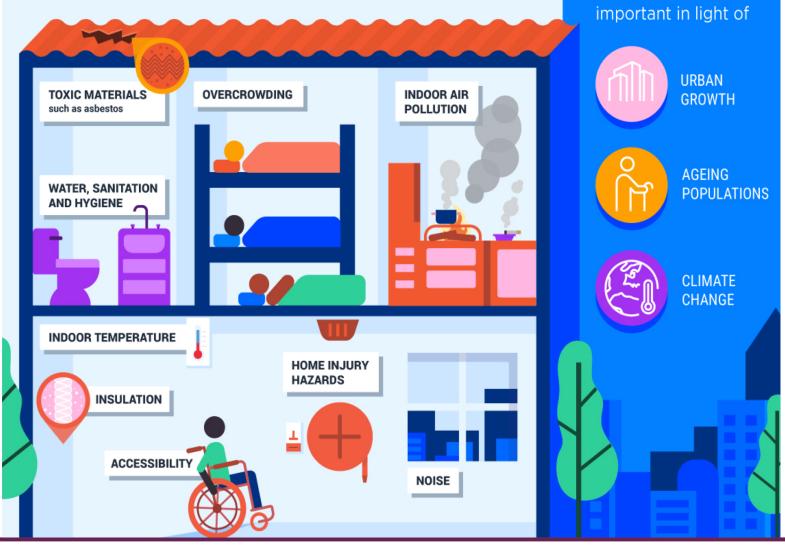
Socioeconomic Disparities in Indoor Fine Particulate Matter Exposure

MyDzung T. Chu, PhD, MSPH Postdoctoral Scientist George Washington University Milken Institute School of Public Health email: mchu@gwu.edu

Collaborative on Health and the Environment July 20th, 2021

Milken Institute School of Public Health THE GEORGE WASHINGTON UNIVERSITY

SCHOOL OF PUBLIC H



Poor housing conditions and health

There are many opportunities to promote health by addressing housing conditions including:

Associated health effects:

- Mortality
- Asthma

Healthy housing

is becoming more

- Cardiovascular events
- Respiratory infections
- Poisonings (e.g. radon, CO, lead)
- Endocrine disruption
- Burns (chemical, fire)
- Physical injuries
- Poor mental health
- Infectious disease

World Health Organization. (2018). WHO housing and health guidelines.

Socioeconomic Disparities in Environmental Exposures Indoors

Housing and Health

Intersection of Poverty and Environmental Exposures

VIRGINIA A. RAUH, " PHILIP J. LANDRIGAN, " AND LUZ CLAUDIO^c

^aColumbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA

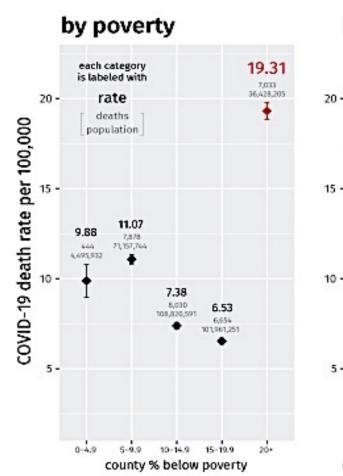
^bDepartment of Community and Preventive Medicine and Children's Environmental Health Center, Mount Sinai School of Medicine, New York, New York, USA

^cDepartment of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, New York, USA


```
Urban institute, 2020
```

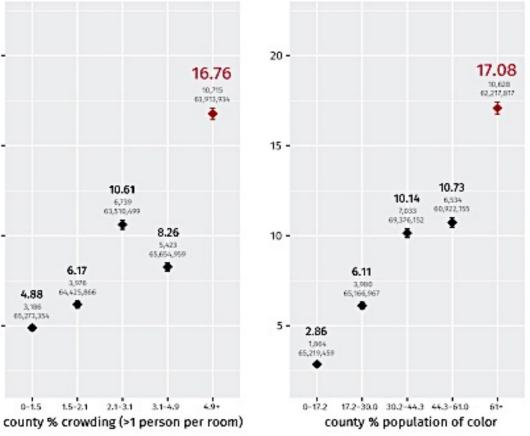
Moving Environmental Justice Indoors: Understanding Structural Influences on Residential Exposure Patterns in Low-Income Communities

Gary Adamkiewicz, PhD, MPH, Ami R. Zota, ScD, MS, M. Patricia Fabian, ScD, Teresa Chahine, ScD, Rhona Julien, ScD, John D. Spengler, PhD, and Jonathan I. Levy, ScD


The Harvard Center for Population Inequities in US COVID-19 Deaths

16.76

10,715 63,913,934


Ŧ

(as of April 16, 2020)

and Development Studies

by population of color

people living in the most disadvantaged counties have the highest COVID-19 death rates

4.9+

Source: Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1, April 21, 2020. https://tinyurl.com/ya44we2r

10.61

6,739

63,510,499

÷

1.5-2.1 2.1-3.1 3.1-4.9

6.17

3,978

64,425,866

4.88

3,196 65,273,354

٠

0-1.5

8.26

5,423

65,654,959

by crowding

Why care about Fine Particulate Matter (PM_{2.5})?

- Ambient & indoor sources
- High risk of chronic exposure
- Small size: Penetrate deep into lungs & gas exchange regions
- Adverse health effects:
 - All-cause mortality
 - Cardiovascular: arrhythmia, blood clots
 - Respiratory: COPD, bronchitis, asthma, lung cancer
 - Reproductive: Low birth weight, weight growth
- Persistent health disparities:
 - Children, low SES, racial/ethnic minorities
 - People with preexisting heart and lung conditions, older adults

Common outdoor and indoor sources:

Baxter et al., 2007; Bernstein et al., 2008; Nazaroff, 2006; Zanobetti et al., 2000; Baccarelli et al., 2007; 2008; Seaton et al., 1999; EPA, 2017; Faustini et al., 2013; Jarvis et al., 1998

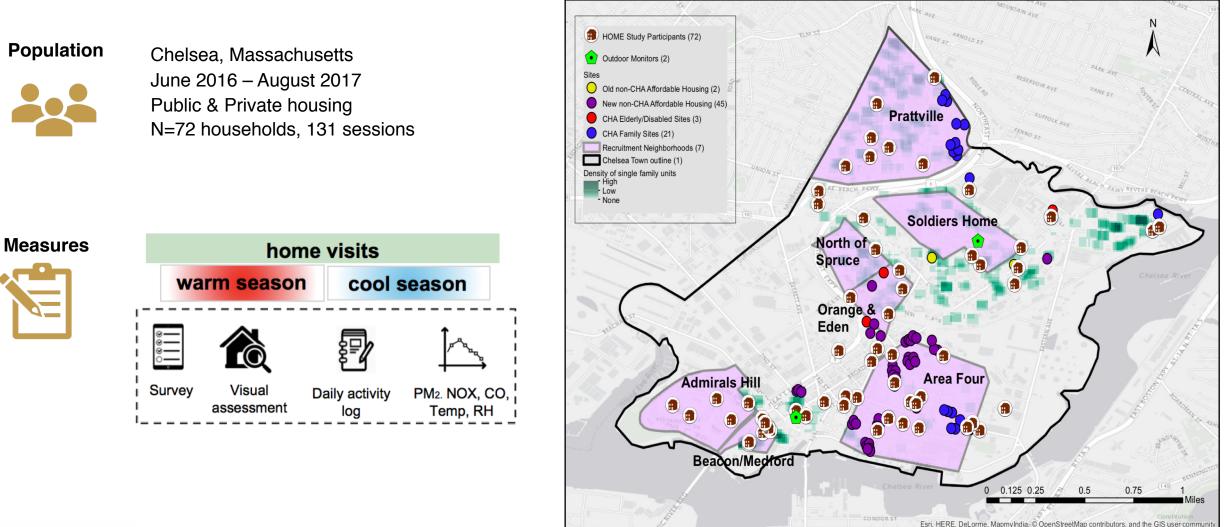
Indoor Exposure Disparities in EJ Communities

HOME Study: Home-based Observation and Monitoring Exposure

CRESSH: Center for **R**esearch on **E**nvironmental and **S**ocial **S**tressors in **H**ousing Across the Life Course

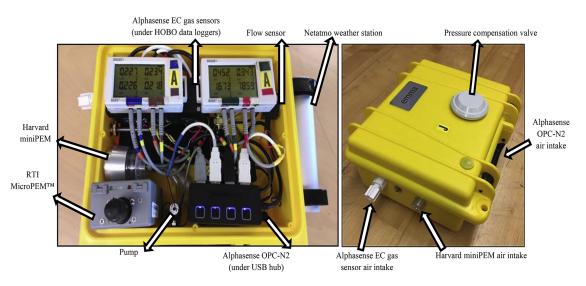
Socio-demographics statewide vs. Chelsea, MA			
	MA	Chelsea	
Population ^a	6,547,785	39,690	
% Hispanic/Latina ^a	12.4%	67.0%	
% Foreign-born ^a	16.8%	45.4%	
Median household income ^b	\$81,215	\$56,802	
% Non-English language spoken at home ^b	23.8%	69.8%	
% Persons in poverty ^b	9.4%	18.1%	
% Renter-occupied units ^b	37.6%	74.1%	
^a 2010 Census ^b American Community Survey, 2015-2019			

PI: Gary Adamkiewicz, Harvard T.H. Chan School of Public Health



School of Public Health

Methods


HOME Study Recruitment Map in Chelsea, Massachusetts, 2016-2017

Chu, M. T., Gillooly, S. E., Levy, J. I., Vallarino, J., Reyna, L. N., Laurent, J. G. C., ... & Adamkiewicz, G. (2021). Real-time indoor PM_{2.5} monitoring in an urban cohort: Implications for exposure disparities and source control. *Environmental research*, *193*, 110561.

Methods

<u>Low-cost sensors:</u> Alphasense OPC-N2 sensor, co-located with miniPEM (indoor) and Harvard impactor (outdoor) for $PM_{2.5}$ calibrations & weekly adjustment

Gillooly, S. E., Zhou, Y., Vallarino, J., Chu, M. T., Michanowicz, D. R., Levy, J. I., & Adamkiewicz, G. (2019). Development of an in-home, real-time air pollutant sensor platform and implications for community use. *Environmental Pollution*, *244*, 440-450.

Question

Cooking, Range hood use, Candle, Incense, Spray air freshener, Smoking [2h, daily, seasonal]

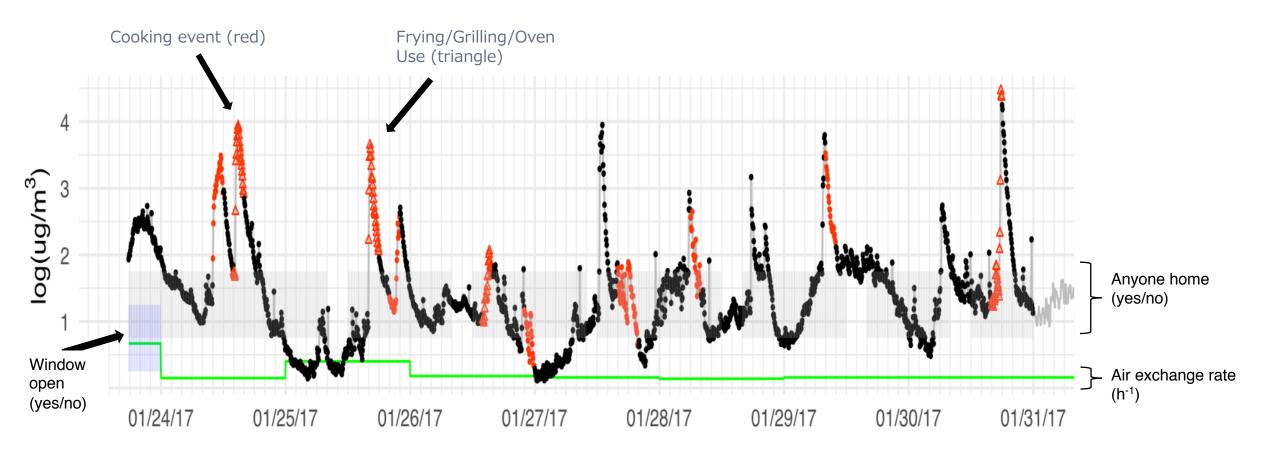
Indoor activities:

Housing tenure Building type

Statistical Analyses

Steady-state, Mass-balance model:

• Estimate non-ambient fraction of total indoor PM_{2.5}


Chi-square/Fisher's exact, Kruskal-Wallis

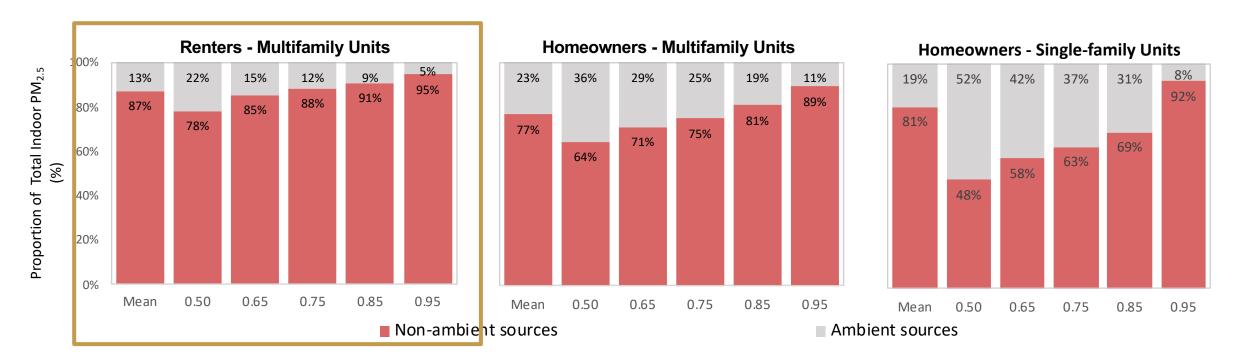
Linear Quantile Mixed Effects Regression

Upper quantiles: 50%, 65%, 75%, 85%, 95%

Methods: Real-time PM_{2.5} measurements

Results: Study Population

	Renters in Multifamily unit (N=39)	Homeowners in Multifamily unit (N=22)	Homeowners in Single-family (N=10)	
	Percent	Percent	Percent	<i>p</i> *
Education Up to Highschool, GED, Some College	85%	45%	30%	<0.001
Bachelor's degree or higher	15%	55%	70%	
Race/ethnicity White non-Hispanic Hispanic/Latinx Other, Non-Hispanic	21% 67% 13%	64% 27% 9%	60% 30% 10%	0.006
Nativity U.Sborn Foreign-born	41% 59%	73% 27%	80% 20%	0.062
Interview Language English Spanish	46% 54%	77% 23%	100% 0%	<0.001
Employment status				
Employed Unemployed	27% 73%	87% 13%	85% 15%	<0.001


 $^{\ast}\chi^{2}$ or Fisher's exact test

Results: Differences by Housing Tenure

Environmental measures Mean (SD)	Renters Multifamily unit (N=39)	Homeowners Multifamily (N=22)	Homeowners Single-family (N=10)	$ ho^{\dagger}$
Indoor PM _{2.5} (SD) (µg/m ³)	12.8 (14.3)	6.01 (4.2)	8.8 (17.0)	0.002
Outdoor PM _{2.5} (SD) (µg/m³)	5.6 (2.3)	5.2 (3.2)	5.2 (2.1)	0.354
Air Exchange Rate (SD) (h-1)	0.70 (0.41)	0.52 (0.39)	0.58 (0.42)	0.004

† Kruskal-Wallis rank sum test



Renter Households reported higher prevalence of:

- <u>Activities</u>: Cooking, smoking, incense use, spray air freshener use, window opening, range hood use
- <u>Building</u>: Second-hand smoke, no central air, no weatherization

Results: Non-Ambient Source Predictors of Indoor PM_{2.5}

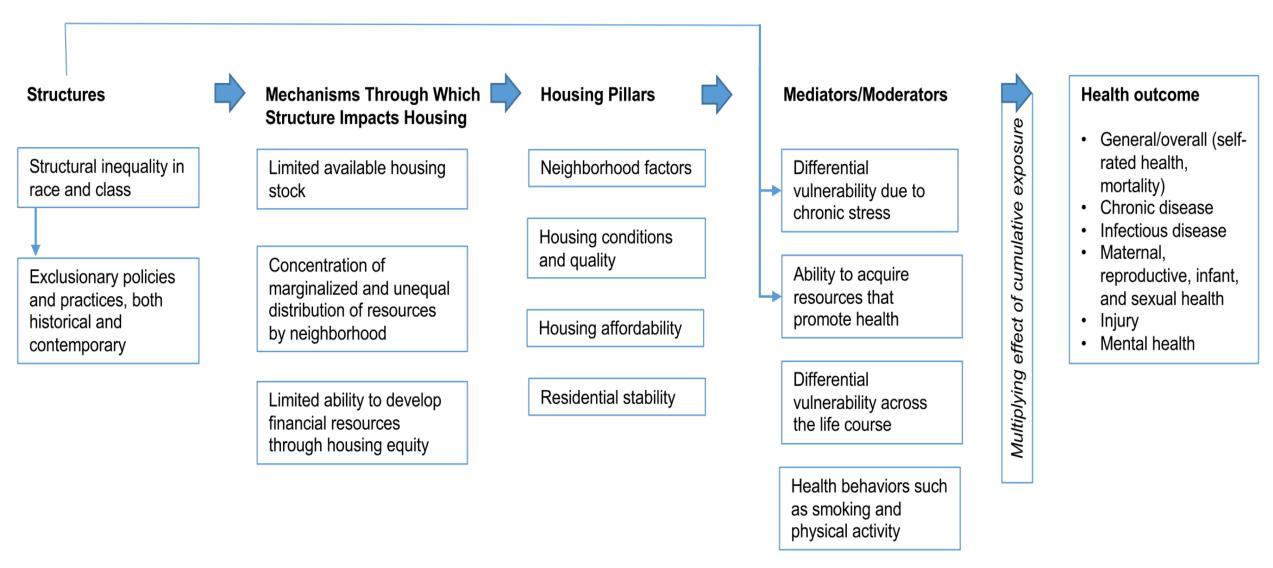
Models adjusted for candle and spray air freshener use; window opening and AC use in the living area; year of sampling; hour of day; indoor relative humidity; number of occupants per bedroom; and number of levels within unit.

Takeaways

- Majority of indoor PM_{2.5} concentrations from non-ambient (e.g. cooking, smoking) vs. ambient sources
 - Higher proportion at upper exposure quantiles
 - Higher exposure for renter households
- Renters exposed to higher PM_{2.5} concentrations due to a combination of <u>behavioral</u> and <u>building</u> factors amenable to intervention.
- > Environmental justice implications:
 - Majority of renters were non-English speakers, foreign-born, without a college degree, unemployed
- Recommendations: Multi-level approach
 - Landlord & Tenant education
 - Financial assistance
 - Building-wide improvements

Multilevel framework for residential environmental exposures

Systemic Factors


Social determinants of health Intergenerational wealth/poverty Institutional & Interpersonal Racism Housing & financial policies Zoning policies, redlining

•	

Neighborhood a	nd housing access	
Neighborhood		
Regional pollution	Building	
Local traffic Commercial activities Population density Industry Weather Noise Affordability Safety Commutability	Construction style Infiltration dynamics Common area pollutants HVAC Age / Condition Maintenance practices Affordability	Household Source usage and strength Occupant density Pollutant sinks Smoking behaviors Time activity patterns Comfort-related behavior

Figure adapted from Adamkiewicz G, et al. *Moving environmental justice indoors: understanding structural influences on residential exposure patterns in low-income communities*. AJPH 2011 Dec; 101 Suppl 1:S238-45. 15

Housing and Health Equity Model

Swope, C. B., & Hernández, D. (2019). Housing as a determinant of health equity: A conceptual model. *Social Science & Medicine*, *243*, 112571.

Acknowledgements

Our HOME Study Participants!!!

Co-authors:

- Gary Adamkiewicz, HOME Project Lead
- Sara E. Gillooly
- Jon I. Levy
- Jose Vallarino
- Lacy N. Reyna
- Jose Guillermo Cedeno Laurent
- Brent A. Coull

Other CRESSH HOME Team members:

- Marty Alvarez
- Kelli Gonzalez

SCHOOL OF PUBLIC HEALTH

Boston University School of Public Health

CRESSH Community Engagement Core

- Madeleine Scammell
- Claire Schollaert

GreenRoots

Roseanne Bongiovnni

Analysis guidance:

- Tamarra James-Todd, Dissertation Committee
- David R. Williams, Dissertation Committee
- Steven Worthington, Harvard Institute for Quantitative Social Science

Funders:

- National Institute on Minority Health and Health Disparities (P50MD010428)
- U.S. Environmental Protection Agency (Award No. RD-836156)
- National Institute of Environmental Health Sciences (T32ES07069)
- Harvard Joint Center for Housing Studies Student Research Support Program

The author has no personal or financial interests to declare.

Thank you! MyDzung Chu, PhD, MSPH Post-Doctoral Scientist Department of Environmental and Occupational Health George Washington University Milken Institute School of Public Health Email: mchu@gwu.edu | LinkedIn | @mydz_C